2.43 Advanced Thermodynamics
2.43 Advanced Thermodynamics (Spring 2024, MIT OCW). Instructor: Prof. Gian Paolo Beretta. This course is a self-contained concise review of general thermodynamics concepts, multicomponent equilibrium properties, chemical equilibrium, electrochemical potentials, and chemical kinetics, as needed to introduce the methods of nonequilibrium thermodynamics and to provide a unified understanding of phase equilibria, transport, and nonequilibrium phenomena useful for future energy and climate engineering technologies. Applications include second-law efficiencies and methods to allocate primary energy consumptions and CO₂ emissions in cogeneration and hybrid power systems, minimum work of separation, maximum work of mixing, osmotic pressure and membrane equilibria, metastable states, spinodal decomposition, and Onsager's near-equilibrium reciprocity in thermodiffusive, thermoelectric, and electrokinetic cross effects. (from ocw.mit.edu)
Lecture 05 - Definition of Heat Interaction; First and Second Law Efficiencies |
Definition of heat interaction. First and second law efficiencies of heat engines, refrigeration units, heat pumps. Stable equilibrium properties (temperature, pressure, heat capacities, coefficients of isothermal compressibility and isobaric expansion).
Go to the Course Home or watch other lectures: