InfoCoBuild

PHYS 201 - Fundamentals of Physics II

Lecture 25 - Quantum Mechanics VII: Summary of postulates and special topics. The various postulates of quantum mechanics treated in previous lectures are reviewed and summarized. The uncertainty principle is again discussed and a new one between energy and time is introduced. The quantum mechanical behavior of an electron in a hydrogen atom is described. The principles of quantum mechanics are then generalized to describe two or more quantum particles. It is shown that identical particles have to be bosons or fermions, the latter obeying the Pauli exclusion principle, which in turn is key to explaining the periodic table. (from oyc.yale.edu)

Lecture 25 - Quantum Mechanics VII: Summary of postulates and special topics

Time Lecture Chapters
[00:00:00] 1. Major Postulates of Quantum Mechanics
[00:20:32] 2. Applications of Quantum Mechanics
[00:28:00] 3. Energy-Time Uncertainty Principle
[00:41:21] 4. Quantum Mechanics of More Than One Particle

References
PHYS 201: Lecture 25 - Quantum Mechanics VII: Summary of postulates and special topics
Instructor: Professor Ramamurti Shankar. Resources: Quantum Mechanics Notes [pdf]. Problem Set 13 and Solutions [pdf]. Transcript [html]. Audio [mp3]. Download Video [mov].

Go to the Course Home or watch other lectures:

Lecture 01 - Electrostatics
Lecture 02 - Electric Fields
Lecture 03 - Gauss's Law I
Lecture 04 - Gauss's Law and Application to Conductors and Insulators
Lecture 05 - The Electric Potential and Conservation of Energy
Lecture 06 - Capacitors
Lecture 07 - Resistance
Lecture 08 - Circuits and Magnetism I
Lecture 09 - Magnetism II
Lecture 10 - Ampere's Law
Lecture 11 - Lenz's and Faraday's Laws
Lecture 12 - LCR Circuits - DC Voltage
Lecture 13 - LCR Circuits - AC Voltage
Lecture 14 - Maxwell's Equations and Electromagnetic Waves I
Lecture 15 - Maxwell's Equations and Electromagnetic Waves II
Lecture 16 - Ray or Geometrical Optics I
Lecture 17 - Ray or Geometrical Optics II
Lecture 18 - Wave Theory of Light
Lecture 19 - Quantum Mechanics I: Key experiments and wave-particle duality
Lecture 20 - Quantum Mechanics II
Lecture 21 - Quantum Mechanics III
Lecture 22 - Quantum Mechanics IV: Measurement theory, states of definite energy
Lecture 23 - Quantum Mechanics V: Particle in a box
Lecture 24 - Quantum Mechanics VI: Time-dependent Schrodinger Equation
Lecture 25 - Quantum Mechanics VII: Summary of postulates and special topics