MAE 5790: Nonlinear Dynamics and Chaos
MAE 5790: Nonlinear Dynamics and Chaos (Spring 2014, Cornell University). Instructor: Professor Steven Strogatz. This course provides an introduction to nonlinear dynamics, with applications to physics, engineering, biology, and chemistry. It closely follows Prof. Strogatz's book, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering."
The mathematical treatment is friendly and informal, but still careful. Analytical methods, concrete examples, and geometric intuition are stressed. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Lecture 23 - Fractals and the Geometry of Strange Attractors |
Analogy to making pastry. The geometry underlying chaos: Stretching, folding, and reinjection of phase space. The same process generates the fractal microstructure of strange attractors. Rössler attractor. Visualizing a strange attractor as an "infinite complex of surfaces" (in the words of Edward Lorenz). The Cantor set as a model for the cross-section of strange attractors. Dimension of Cantor set and other self-similar fractals.
Go to the Course Home or watch other lectures: