MAE 5790: Nonlinear Dynamics and Chaos
MAE 5790: Nonlinear Dynamics and Chaos (Spring 2014, Cornell University). Instructor: Professor Steven Strogatz. This course provides an introduction to nonlinear dynamics, with applications to physics, engineering, biology, and chemistry. It closely follows Prof. Strogatz's book, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering."
The mathematical treatment is friendly and informal, but still careful. Analytical methods, concrete examples, and geometric intuition are stressed. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Lecture 21 - Feigenbaum's Renormalization Analysis of Period Doubling |
Superstable fixed points and cycles. Intuition behind renormalization, based on self-similarity. Renormalization transformation. Defining a family of universal functions. Explaining geometrically where the universal aspects of period doubling come from. Functional equation for alpha and the universal function g.
Go to the Course Home or watch other lectures: