Universal Hyperbolic Geometry
Universal Hyperbolic Geometry (UNSW). This is a collection of video lectures on Universal Hyperbolic Geometry given by Professor N. J. Wildberger. This course explains a new, simpler and more elegant theory of non-Euclidean geometry; in particular hyperbolic geometry. It is a purely algebraic approach which avoids transcendental functions like log, sin, tanh etc, relying instead on high school algebra and quadratic equations. The theory is more general, extending beyond the null circle, and connects naturally to Einstein's special theory of relativity.
Lecture 16 - Midpoints and Bisectors |
Midpoints of sides may be defined in terms of reflections in points in hyperbolic geometry. Reflections are defined by 2x2 trace zero matrices associated to points. The case of a reflection in a null point is somewhat special. The crucial property of reflection is that it preserves perpendicularity, which then implies that reflections send lines to lines. Midpoints of a side bc can be constructed with a straightedge when they exist, and in general there are two of them! This is a big difference with Euclidean geometry. Bisectors of vertices are defined by duality.
Go to the Course Home or watch other lectures: