Universal Hyperbolic Geometry
Universal Hyperbolic Geometry (UNSW). This is a collection of video lectures on Universal Hyperbolic Geometry given by Professor N. J. Wildberger. This course explains a new, simpler and more elegant theory of non-Euclidean geometry; in particular hyperbolic geometry. It is a purely algebraic approach which avoids transcendental functions like log, sin, tanh etc, relying instead on high school algebra and quadratic equations. The theory is more general, extending beyond the null circle, and connects naturally to Einstein's special theory of relativity.
Lecture 12 - Null Points and Null Lines |
Null points and null lines are central in universal hyperbolic geometry. By definition a null point is just a point which lies on its dual line, and dually a null line is just a line which passes through its dual point. We extend the rational parametrization of the unit circle to the projective parametrization of null points and null lines. And we determine the joins of null points and meets of null lines using these coordinates.
Go to the Course Home or watch other lectures: