InfoCoBuild

BENG 100 - Frontiers of Biomedical Engineering

Lecture 11 - Biomolecular Engineering: General Concepts. Professor Saltzman starts the lecture with an introduction to pharmacokinetics and pharmacodynamics. Professor Saltzman talks about the concept of dose-response. He introduces different routes of drug administration and how they affect drug distribution and bioavailability (i.e., intravenous, oral, and sublingual routes). First-pass drug metabolism by the liver is also identified as an important source of drug degradation. Finally, modeling the body as a well-stirred vessel, Professor Saltzman explains the first-order rate equation: C = (M0/V)*e-kt, that can be used calculate the amount of drug in the body (M) as a function of time (t) and a rate constant (k); and the equation for drug half-life: t = ln(2/k). (from oyc.yale.edu)

Lecture 11 - Biomolecular Engineering: General Concepts

Time Lecture Chapters
[00:00:00] 1. Introduction to Drug Delivery
[00:07:13] 2. Relationships between Drug Dosage and Biological Response
[00:12:22] 3. Injections for Drug Delivery
[00:28:48] 4. Oral Drug Delivery
[00:41:25] 5. Drug Bioavailability

References
Lecture 11 - Biomolecular Engineering: General Concepts
Instructor: W. Mark Saltzman. Resources: Summary and key concepts: chapter 14 [pdf]. Transcript [html]. Audio [mp3]. Download Video [mov].

Go to the Course Home or watch other lectures:

Lecture 01 - What is Biomedical Engineering?
Lecture 02 - What is Biomedical Engineering? (cont.)
Lecture 03 - Genetic Engineering
Lecture 04 - Genetic Engineering (cont.)
Lecture 05 - Cell Culture Engineering
Lecture 06 - Cell Culture Engineering (cont.)
Lecture 07 - Cell Communication and Immunology
Lecture 08 - Cell Communication and Immunology (cont.)
Lecture 09 - Biomolecular Engineering: Engineering of Immunity
Lecture 10 - Biomolecular Engineering: Engineering of Immunity (cont.)
Lecture 11 - Biomolecular Engineering: General Concepts
Lecture 12 - Biomolecular Engineering: General Concepts (cont.)
Lecture 13 - Cardiovascular Physiology
Lecture 14 - Cardiovascular Physiology (cont.)
Lecture 15 - Cardiovascular Physiology (cont.)
Lecture 16 - Renal Physiology
Lecture 17 - Renal Physiology (cont.)
Lecture 18 - Biomechanics and Orthopedics
Lecture 19 - Biomechanics and Orthopedics (cont.)
Lecture 20 - Bioimaging
Lecture 21 - Bioimaging (cont.)
Lecture 22 - Tissue Engineering
Lecture 23 - Tissue Engineering (cont.)
Lecture 24 - Biomedical Engineers and Cancer
Lecture 25 - Biomedical Engineers and Artificial Organs