Physics 221A: Quantum Mechanics
Physics 221A: Quantum Mechanics (Fall 2010, UC Berkeley). Instructor: Professor Robert Littlejohn. This course deals with topics in quantum mechanics: basic assumptions of quantum mechanics; quantum theory of measurement;
matrix mechanics; Schroedinger theory; symmetry and invariance principles; theory of angular momentum; stationary state problems; variational principles; time independent perturbation theory; time dependent perturbation theory;
theory of scattering. The textbook for this course is Modern Quantum Mechanics by J.J. Sakurai, Revised Edition (Addison-Wesley, New York, 1994).
|
Lecture 01 - The Mathematical Formalism of Quantum Mechanics |
Lecture 02 - The Mathematical Formalism of Quantum Mechanics (cont.) |
Lecture 03 - The Mathematical Formalism (cont.), The Postulates of Quantum Mechanics |
Lecture 04 - The Postulates of Quantum Mechanics (cont.), The Density Operator |
Lecture 05 - The Density Operator (cont.), Spatial Degrees of Freedom |
Lecture 06 - Spatial Degrees of Freedom (cont.) |
Lecture 07 - Time Evolution in Quantum Mechanics |
Lecture 08 - Time Evolution in Quantum Mechanics (cont.), Topics in One-Dimensional Wave Mechanics, The WKB Method |
Lecture 09 - The WKB Method (cont.) |
Lecture 10 - The WKB Method (cont.) |
Lecture 11 - The WKB Method (cont.), Harmonic Oscillators and Coherent States |
Lecture 12 - Harmonic Oscillators and Coherent States (cont.) |
Lecture 13 - Harmonic Oscillators and Coherent States (cont.), The Propagator and the Path Integral |
Lecture 14 - The Propagator and the Path Integral (cont.) |
Lecture 15 - The Propagator and the Path Integral (cont.) |
Lecture 16 - The Propagator and the Path Integral (cont.), Charged Particles in Magnetic Fields |
Lecture 17 - Charged Particles in Magnetic Fields (cont.) |
Lecture 18 - Charged Particles in Magnetic Fields (cont.), Rotations in Ordinary Space |
Lecture 19 - Rotations in Ordinary Space (cont.), Rotations in Quantum Mechanics, and Rotations of Spin 1/2 Systems |
Lecture 20 - Rotations in Quantum Mechanics, and Rotations of Spin 1/2 Systems |
Lecture 21 - Rotations in Quantum Mechanics, and Rotations of Spin 1/2 Systems (cont.), Representations of the Angular Momentum Operators and Rotations |
Lecture 22 - Representations of the Angular Momentum Operators and Rotations, Spins in Magnetic Fields |
Lecture 23 - Spins in Magnetic Fields (cont.) |
Lecture 24 - Spins in Magnetic Fields (cont.), Orbital Angular Momentum and Spherical Harmonics |
Lecture 25 - Orbital Angular Momentum and Spherical Harmonics (cont.), Central Force Motion |
Lecture 26 - Central Force Motion (cont.) |
Lecture 27 - Central Force Motion (cont.) |
Lecture 28 - Coupling Spatial and Spin Degrees of Freedom, Coupling of Angular Momenta |
Lecture 29 - Coupling of Angular Momenta (cont.) |
Lecture 30 - Irreducible Tensor Operators and the Wigner-Eckart Theorem |
Lecture 31 - Irreducible Tensor Operators and the Wigner-Eckart Theorem (cont.) |
Lecture 32 - Irreducible Tensor Operators and the Wigner-Eckart Theorem (cont.), Parity |
Lecture 33 - Parity (cont.), Time Reversal |
Lecture 34 - Time Reversal (cont.) |
Lecture 35 - Time Reversal (cont.) |
Lecture 36 - Bound-State Perturbation Theory |
Lecture 37 - The Stark Effect in Hydrogen and Alkali Atoms |
Lecture 38 - The Stark Effect in Hydrogen and Alkali Atoms, Fine Structure in Hydrogen and Alkali Atoms |
Lecture 39 - Fine Structure in Hydrogen and Alkali Atoms, The Zeeman Effect in Hydrogen and Alkali Atoms |
Lecture 40 - The Zeeman Effect in Hydrogen and Alkali Atoms (cont.) |
Lecture 41 - Deuteron |
Related Links |
Physics 221A Quantum Mechanics, Fall 2010
Instructor: Robert Littlejohn. Lecture Notes. Homework Assignments. Homework Solutions. Recommended Text: Modern Quantum Mechanics by J.J. Sakurai, Revised Edition.
|