Physics 221A: Quantum Mechanics
Physics 221A: Quantum Mechanics (Fall 2010, UC Berkeley) . Instructor: Professor Robert Littlejohn. This course deals with topics in quantum mechanics: basic assumptions of quantum mechanics; quantum theory of measurement;
matrix mechanics; Schroedinger theory; symmetry and invariance principles; theory of angular momentum; stationary state problems; variational principles; time independent perturbation theory; time dependent perturbation theory;
theory of scattering. The textbook for this course is Modern Quantum Mechanics by J.J. Sakurai, Revised Edition (Addison-Wesley, New York, 1994) .
Lecture 10 - The WKB Method (cont.)
Go to the Course Home or watch other lectures:
Lecture 01 - The Mathematical Formalism of Quantum Mechanics
Lecture 02 - The Mathematical Formalism of Quantum Mechanics (cont.)
Lecture 03 - The Mathematical Formalism (cont.), The Postulates of Quantum Mechanics
Lecture 04 - The Postulates of Quantum Mechanics (cont.), The Density Operator
Lecture 05 - The Density Operator (cont.), Spatial Degrees of Freedom
Lecture 06 - Spatial Degrees of Freedom (cont.)
Lecture 07 - Time Evolution in Quantum Mechanics
Lecture 08 - Time Evolution in Quantum Mechanics (cont.), Topics in One-Dimensional Wave Mechanics, The WKB Method
Lecture 09 - The WKB Method (cont.)
Lecture 10 - The WKB Method (cont.)
Lecture 11 - The WKB Method (cont.), Harmonic Oscillators and Coherent States
Lecture 12 - Harmonic Oscillators and Coherent States (cont.)
Lecture 13 - Harmonic Oscillators and Coherent States (cont.), The Propagator and the Path Integral
Lecture 14 - The Propagator and the Path Integral (cont.)
Lecture 15 - The Propagator and the Path Integral (cont.)
Lecture 16 - The Propagator and the Path Integral (cont.), Charged Particles in Magnetic Fields
Lecture 17 - Charged Particles in Magnetic Fields (cont.)
Lecture 18 - Charged Particles in Magnetic Fields (cont.), Rotations in Ordinary Space
Lecture 19 - Rotations in Ordinary Space (cont.), Rotations in Quantum Mechanics, and Rotations of Spin 1/2 Systems
Lecture 20 - Rotations in Quantum Mechanics, and Rotations of Spin 1/2 Systems
Lecture 21 - Rotations in Quantum Mechanics, and Rotations of Spin 1/2 Systems (cont.), Representations of the Angular Momentum Operators and Rotations
Lecture 22 - Representations of the Angular Momentum Operators and Rotations, Spins in Magnetic Fields
Lecture 23 - Spins in Magnetic Fields (cont.)
Lecture 24 - Spins in Magnetic Fields (cont.), Orbital Angular Momentum and Spherical Harmonics
Lecture 25 - Orbital Angular Momentum and Spherical Harmonics (cont.), Central Force Motion
Lecture 26 - Central Force Motion (cont.)
Lecture 27 - Central Force Motion (cont.)
Lecture 28 - Coupling Spatial and Spin Degrees of Freedom, Coupling of Angular Momenta
Lecture 29 - Coupling of Angular Momenta (cont.)
Lecture 30 - Irreducible Tensor Operators and the Wigner-Eckart Theorem
Lecture 31 - Irreducible Tensor Operators and the Wigner-Eckart Theorem (cont.)
Lecture 32 - Irreducible Tensor Operators and the Wigner-Eckart Theorem (cont.), Parity
Lecture 33 - Parity (cont.), Time Reversal
Lecture 34 - Time Reversal (cont.)
Lecture 35 - Time Reversal (cont.)
Lecture 36 - Bound-State Perturbation Theory
Lecture 37 - The Stark Effect in Hydrogen and Alkali Atoms
Lecture 38 - The Stark Effect in Hydrogen and Alkali Atoms, Fine Structure in Hydrogen and Alkali Atoms
Lecture 39 - Fine Structure in Hydrogen and Alkali Atoms, The Zeeman Effect in Hydrogen and Alkali Atoms
Lecture 40 - The Zeeman Effect in Hydrogen and Alkali Atoms (cont.)
Lecture 41 - Deuteron