Quantum Mechanics and Applications
Quantum Mechanics and Applications. Instructor: Professor Ajoy Ghatak, Department of Physics, IIT Delhi. Basic mathematical preliminaries: Dirac Delta function and Fourier Transforms. Wave particle duality, one- and three- dimensional Schrodinger equation. The free particle problem in one dimension. Wave Packets and Group velocity. One-dimensional problems: Potential well of infinite and finite depths, the linear harmonic oscillator. Angular Momentum and rotation. Three-dimensional Schrodinger equation: Particle in a box with applications to the free electron model. Particle in a spherically symmetric potential problem. The hydrogen atom and the deuteron. (A numerical method to obtain solutions of the Schrodinger equation will also be discussed and a software to understand basic concepts in quantum mechanics will also be demonstrated). Dirac's bra - ket algebra; Linear Harmonic Oscillator problem using bra - ket algebra, creation and annihilation operators, transition to the classical oscillator, Coherent states. The angular momentum problem, using bra - ket algebra, ladder operators and angular momentum matrices. The Stern Gerlach and magnetic resonance experiments. Addition of Angular Momenta and Clebsch-Gordan coefficients. Perturbation Theory with applications; The JWKB approximation with applications; Scattering Theory: Partial Wave Analysis. (from nptel.ac.in)
Lecture 31 - Pauli Spin Matrices and The Stern Gerlach Experiment |
Go to the Course Home or watch other lectures: