InfoCoBuild

Path Integral and Functional Methods in Quantum Field Theory

Path Integral and Functional Methods in Quantum Field Theory. Instructor: Prof. Urjit A. Yajnik, Department of Physics, IIT Bombay. Path Integral Method is an important formal development in quantum mechanics. The first half of the course is useful for any student of quantum mechanics, providing deeper insights into the theory. The second half of the course discusses path integral method in its functional form applied to space-time fields and brings out connection of quantised fields to elementary particles. (from nptel.ac.in)

Lecture 15 - Effective Potential III


Go to the Course Home or watch other lectures:

Lecture 01 - Quantum Theory Fundamental Quantization
Lecture 02 - Quantum Theory Fundamental Quantization (cont.)
Lecture 03 - Path Integral Formulation I
Lecture 04 - Path Integral Formulation II
Lecture 05 - Path Integral Formulation III
Lecture 06 - Path Integral Formulation IV
Lecture 07 - Correlation Functions
Lecture 08 - Correlation Functions (cont.)
Lecture 09 - Generating Functional, Forced Harmonic Oscillator
Lecture 10 - Generating Functional, Forced Harmonic Oscillator (cont.)
Lecture 11 - Generating Function in Field Theory
Lecture 12 - Generating Function in Field Theory (cont.)
Lecture 13 - Effective Potential I
Lecture 14 - Effective Potential II
Lecture 15 - Effective Potential III
Lecture 16 - Effective Potential IV
Lecture 17 - Asymptotic Theory
Lecture 18 - Asymptotic Theory (cont.)
Lecture 19 - Asymptotic Condition Kallen-Lehmann Representation
Lecture 20 - Asymptotic Condition Kallen-Lehmann Representation (cont.)
Lecture 21 - Gauge Invariance - Minimal Coupling
Lecture 22 - Gauge Invariance - Geometric Picture
Lecture 23 - Gauge Invariance - Abelian Case
Lecture 24 - Gauge Invariance - Non-Abelian Case
Lecture 25 - Yang Mills Theory - Coupling to Matter
Lecture 26 - Yang Mills Theory - Physical Content
Lecture 27 - Yang Mills Theory - Constraint Dynamics
Lecture 28 - Yang Mills Theory - Constraint Dynamics (cont.)
Lecture 29 - Gauge Fixing and Faddeev Popov Ghosts
Lecture 30 - Gauge Fixing and Faddeev Popov Ghosts (cont.)
Lecture 31 - Topological Vacuum of Yang Mills Theories
Lecture 32 - Topological Vacuum of Yang Mills Theories (cont.)