InfoCoBuild

Selected Topics in Mathematical Physics

Selected Topics in Mathematical Physics. Instructor: Professor V. Balakrishnan, Department of Physics, IIT Madras. A basic course in mathematical methods used in physics. Analytic functions of a complex variable. Calculus of residues, Linear response; dispersion relations. Analytic continuation and the gamma function. Mobius transformations. Multivalued functions; integral representations. Laplace transforms. Fourier transforms. Fundamental Green function for the Laplacian operator. The diffusion equation. Green function for the Helmholtz operator; nonrelativistic scattering. The wave equation. The rotation group and all that. (from nptel.ac.in)

Lecture 34 - The Rotation Group and All That (Part I)

Rotations of the coordinate axes. Orthogonality of rotation matrices. Proper and improper rotations. Generators of infinitesimal rotations in 3 dimensions. Lie algebra of generators. Rotation generators in 3 dimensions transform like a vector. The general rotation matrix in 3 dimensions.


Go to the Course Home or watch other lectures:

Lecture 01 - Analytic Functions of a Complex Variable (Part I)
Lecture 02 - Analytic Functions of a Complex Variable (Part II)
Lecture 03 - Calculus of Residues (Part I)
Lecture 04 - Calculus of Residues (Part II)
Lecture 05 - Calculus of Residues (Part III)
Lecture 06 - Calculus of Residues (Part IV)
Lecture 07 - Linear Response; Dispersion Relations (Part I)
Lecture 08 - Linear Response; Dispersion Relations (Part II)
Lecture 09 - Analytic Continuation and the Gamma Function (Part I)
Lecture 10 - Analytic Continuation and the Gamma Function (Part II)
Lecture 11 - Mobius Transformations (Part I)
Lecture 12 - Mobius Transformations (Part II)
Lecture 13 - Mobius Transformations (Part III)
Lecture 14 - Multivalued Functions; Integral Representations (Part I)
Lecture 15 - Multivalued Functions; Integral Representations (Part II)
Lecture 16 - Multivalued Functions; Integral Representations (Part III)
Lecture 17 - Multivalued Functions; Integral Representations (Part IV)
Lecture 18 - Laplace Transforms (Part I)
Lecture 19 - Laplace Transforms (Part II)
Lecture 20 - Fourier Transforms (Part I)
Lecture 21 - Fourier Transforms (Part II)
Lecture 22 - Fourier Transforms (Part III)
Lecture 23 - Fundamental Green Function for Δ2 (Part I)
Lecture 24 - Fundamental Green Function for Δ2 (Part II)
Lecture 25 - The Diffusion Equation (Part I)
Lecture 26 - The Diffusion Equation (Part II)
Lecture 27 - The Diffusion Equation (Part III)
Lecture 28 - The Diffusion Equation (Part IV)
Lecture 29 - Green function for (Δ2 + k2); Nonrelativistic Scattering (Part I)
Lecture 30 - Green function for (Δ2 + k2); Nonrelativistic Scattering (Part II)
Lecture 31 - Green function for (Δ2 + k2); Nonrelativistic Scattering (Part III)
Lecture 32 - The Wave Equation (Part I)
Lecture 33 - The Wave Equation (Part II)
Lecture 34 - The Rotation Group and All That (Part I)
Lecture 35 - The Rotation Group and All That (Part II)
Lecture 36 - The Rotation Group and All That (Part III)