8.04 Quantum Physics I
8.04 Quantum Physics I (Spring 2013, MIT OCW). Instructors: Prof. Allan Adams, Prof. Matthew Evans and Prof. Barton Zwiebach. This course covers the experimental basis of quantum physics. Topics include: photoelectric effect, Compton scattering, photons, Franck-Hertz experiment, the Bohr atom, electron diffraction, de Broglie waves, and the wave-particle duality of matter and light. Introduction to wave mechanics: Schrodinger's equation, wave functions, wave packets, probability amplitudes, stationary states, the Heisenberg uncertainty principle, and zero-point energies. Solutions to Schrodinger's equation in one dimension: transmission and reflection at a barrier, barrier penetration, potential wells, the simple harmonic oscillator. Schrodinger's equation in three dimensions: central potentials and introduction to hydrogenic systems. (from ocw.mit.edu)
Lecture 05 - Operators and the Schrоdinger Equation |
In this lecture, Prof. Zweibach gives a mathematical preliminary on operators. He then introduces postulates of quantum mechanics concerning observables and measurement. The last part of the lecture is devoted to the origins of the Schrodinger equation.
Go to the Course Home or watch other lectures: