InfoCoBuild

Introduction to Fluid Mechanics and Fluid Engineering

Introduction to Fluid Mechanics and Fluid Engineering. Instructor: Prof. Suman Chakraborty, Department of Mechanical Engineering, IIT Kharagpur. Fluid mechanics is almost everywhere in human life - automobiles, watercrafts, spacecrafts, sports ball dynamics, blood flow in arteries and veins, cooling of microchips through fluid flow and phase change in a computer system, intriguing fluid flow patterns in nature such as flow around butterfly, and so on. This course provides an introduction to fluid mechanics and fluids engineering and will cover topics viscosity, surface tension, fluid statics, fluid kinematics, dynamics of inviscid flows, integral forms of control volume conservation equations, dynamics of viscous flows, turbulence, boundary layer theory, flow past immersed bodies, pipe flows, fluid mechanics, and compressible flows. (from nptel.ac.in)

Lecture 04 - Viscosity


Go to the Course Home or watch other lectures:

Lecture 01 - Introductory Concepts
Lecture 02 - Introductory Concepts (cont.)
Lecture 03 - Introductory Concepts (cont.)
Lecture 04 - Viscosity
Lecture 05 - Viscosity (cont.)
Lecture 06 - Viscosity (cont.), Surface Tension
Lecture 07 - Surface Tension (cont.), Fluid Statics
Lecture 08 - Fluid Statics (cont.)
Lecture 09 - Fluid Statics (cont.)
Lecture 10 - Fluid Statics (cont.), Fluid Under Rigid Body Motion
Lecture 11 - Fluid Kinematics
Lecture 12 - Fluid Kinematics (cont.)
Lecture 13 - Fluid Kinematics (cont.)
Lecture 14 - Fluid Kinematics (cont.)
Lecture 15 - Fluid Kinematics (cont.)
Lecture 16 - Dynamics of Inviscid Flows
Lecture 17 - Dynamics of Inviscid Flows (cont.)
Lecture 18 - Dynamics of Inviscid Flows (cont.)
Lecture 19 - Dynamics of Inviscid Flows (cont.)
Lecture 20 - Dynamics of Inviscid Flows (cont.)
Lecture 21 - Integral Forms of Control Volume Conservation Equations (Reynolds Transport Theorem)
Lecture 22 - Integral Forms of Control Volume Conservation Equations (Reynolds Transport Theorem) (cont.)
Lecture 23 - Integral Forms of Control Volume Conservation Equations (Reynolds Transport Theorem) (cont.)
Lecture 24 - Integral Forms of Control Volume Conservation Equations (Reynolds Transport Theorem) (cont.)
Lecture 25 - Integral Forms of Control Volume Conservation Equations (Reynolds Transport Theorem) (cont.)
Lecture 26 - Integral Forms of Control Volume Conservation Equations (Reynolds Transport Theorem) (cont.)
Lecture 27 - Integral Forms of Control Volume Conservation Equations (Reynolds Transport Theorem) (cont.)
Lecture 28 - Dynamics of Viscous Flows: Navier Stokes Equation
Lecture 29 - Dynamics of Viscous Flows: Navier Stokes Equation (cont.)
Lecture 30 - Some Exact Solutions of Navier Stokes Equation
Lecture 31 - Some Exact Solutions of Navier Stokes Equation (cont.)
Lecture 32 - Some Exact Solutions of Navier Stokes Equation (cont.)
Lecture 33 - Introduction to Turbulence
Lecture 34 - Introduction to Turbulence (cont.)
Lecture 35 - Introduction to Turbulence (cont.)
Lecture 36 - Introduction to Turbulence (cont.)
Lecture 37 - Boundary Layer Theory
Lecture 38 - Boundary Layer Theory (cont.)
Lecture 39 - Boundary Layer Theory (cont.)
Lecture 40 - Boundary Layer Theory (cont.), Flow Past Immersed Bodies
Lecture 41 - Flow Past Immersed Bodies (cont.)
Lecture 42 - Potential Flow Past Immersed Bodies
Lecture 43 - Potential Flow (cont.), Flow Past Immersed Bodies of Special Shapes
Lecture 44 - Flow Past Immersed Bodies (cont.), Sports Ball Aerodynamics
Lecture 45 - Pipe Flow
Lecture 46 - Pipe Flow (cont.)
Lecture 47 - Pipe Flow (cont.)
Lecture 48 - Principles of Similarity and Dimensional Analysis
Lecture 49 - Introduction to Fluid Machines
Lecture 50 - Introduction to Fluid Machines (cont.)
Lecture 51 - Introduction to Fluid Machines (cont.)
Lecture 52 - Introduction to Fluid Machines (cont.)
Lecture 53 - Introduction to Fluid Machines (cont.)
Lecture 54 - Compressible Flows
Lecture 55 - Compressible Flows (cont.)
Lecture 56 - Compressible Flows (cont.)
Lecture 57 - Compressible Flows (cont.)
Lecture 58 - Compressible Flows (cont.)