Engineering Fracture Mechanics
Engineering Fracture Mechanics. Instructor: Prof. K. Ramesh, Department of Applied Mechanics, IIT Madras. The course covers the basic aspects of Engineering Fracture Mechanics. Topics covered in this course include: Spectacular failures that triggered the birth of fracture mechanics, Modes of loading, Classification as LEFM and EPFM, Crack growth and fracture mechanisms, Energy release rate, Resistance, Griffith Theory of fracture, Extension of Griffith Theory by Irwin and Orowan, R-Curve, Pop-in phenomena, Crack branching. Necessary and sufficient conditions for fracture, Stress and Displacement fields in the very near and near-tip fields, Westergaard, Williams and Generalised Westergaard solutions, Influence of the T-stress and higher order terms, Role of photoelasticity on the development of stress field equations in fracture mechanics, Equivalence between SIF and G, Various methods for evaluating Stress Intensity Factors, Modeling plastic zone at the crack-tip, Irwin and Dugdale models, Fracture toughness testing, Fedderson TMs residual strength diagram, Paris law, J-integral, HRR field, Mixed-mode fracture, Crack arrest methodologies. (from nptel.ac.in)
Lecture 40 - Crack Arrest and Repair Methodologies |
Mixed-mode fracture continued, Strain energy density criterion, Comparison of crack growth and critical value of KII by MTS and SED, Experimental work of Wu, Empirical relations in mixed-mode fracture, Crack arrest principle, Use of patches, Photoelastic demonstration of usefulness of a patch, Hole drilling to delay crack re-initiation, Self healing polymers, Metallic stitching.
Go to the Course Home or watch other lectures: