2.003SC Engineering Dynamics (Fall 2011, MIT OCW). Taught by Professor J. Kim Vandiver, this course introduces the dynamics and vibrations of lumped-parameter models of
mechanical systems. Topics covered include kinematics, force-momentum formulation for systems of particles and rigid bodies in planar motion, work-energy concepts,
virtual displacements and virtual work. Students will also become familiar with the following topics: Lagrange's equations for systems of particles and rigid bodies
in planar motion, and linearization of equations of motion. After this course, students will be able to evaluate free and forced vibration of linear multi-degree of
freedom models of mechanical systems and matrix eigenvalue problems.
(from ocw.mit.edu)
Lecture 21 - Vibration Isolation
References
Reducing Problem Vibration and Intro to Multi-DOF Vibration
We discuss ways of treating vibration problems. In particular the design of vibration isolation supports. Then we consider the vibration of systems with multiple degrees of freedom.