Statistics 110: Probability (Harvard Univ.). Taught by Professor Joe Blitzstein, this course is an introduction to probability as a language and
set of tools for understanding statistics, science, risk, and randomness. The ideas and methods are useful in statistics, science, engineering, economics,
finance, and everyday life. Topics include the following. Basics: sample spaces and events, conditioning, Bayes' Theorem. Random variables and their distributions:
distributions, moment generating functions, expectation, variance, covariance, correlation, conditional expectation. Univariate distributions: Normal, t, Binomial,
Negative Binomial, Poisson, Beta, Gamma. Multivariate distributions: joint, conditional, and marginal distributions, independence, transformations, Multinomial,
Multivariate Normal. Limit theorems: law of large numbers, central limit theorem. Markov chains: transition probabilities, stationary distributions, reversibility,
convergence.
Lecture 25 - Order Statistics and Conditional Expectation
This lecture shows how Beta and Gamma are connected (via the bank-post office story), and introduces order statistics. And then it starts on conditional expectation.