18.065 Matrix Methods in Data Analysis, Signal Processing, and Machine Learning
18.065 Matrix Methods in Data Analysis, Signal Processing, and Machine Learning (Spring 2018, MIT OCW). Instructor: Prof. Gilbert Strang. Linear algebra concepts are key for understanding and creating machine learning algorithms, especially as applied to deep learning and neural networks. This course reviews linear algebra with applications to probability and statistics and optimization-and above all a full explanation of deep learning. (from ocw.mit.edu)
Lecture 20 - Definitions and Inequalities |
This lecture continues the focus on probability, which is critical for working with large sets of data. Topics include sample mean, expected mean, sample variance, covariance matrices, Chebyshev's inequality, and Markov's inequality.
Go to the Course Home or watch other lectures: