6.262 Discrete Stochastic Processes
6.262 Discrete Stochastic Processes (Spring 2011, MIT OCW). Instructor: Professor Robert Gallager. Discrete stochastic processes are essentially probabilistic systems that evolve in time via random changes occurring at discrete fixed or random intervals. This course aims to help students acquire both the mathematical principles and the intuition necessary to create, analyze, and understand insightful models for a broad range of these processes. The range of areas for which discrete stochastic-process models are useful is constantly expanding, and includes many applications in engineering, physics, biology, operations research and finance. (from ocw.mit.edu)
Lecture 20 - Markov Processes and Random Walks |
After reviewing steady-state, this lecture discusses reversibility for Markov processes and for tandem M/M/1 queues. Random walks and their applications are then introduced.
Go to the Course Home or watch other lectures: