6.003 Signals and Systems
6.003 Signals and Systems (Fall 2011, MIT OCW). This consists of 25 video lectures given by Professor Dennis Freeman. This course covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses). Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing. (from ocw.mit.edu)
Lecture 22 - Sampling and Quantization |
Digital audio, images, video, and communication signals use quantization to create discrete representations of continuous phenomena. Efficient transmission and reconstruction uses techniques such as dithering, progressive refinement, and the JPEG encoding.
Go to the Course Home or watch other lectures: