Numerical Optimization
Numerical Optimization. Instructor: Prof. Shirish K. Shevade, Department of Computer Science and Automation, IISc Bangalore. This course is about studying optimization algorithms, and their applications in different fields.
Mathematical Background: Convex sets and functions, Need for constrained methods in solving constrained problems.
Unconstrained optimization: Optimality conditions, Line Search Methods, Quasi-Newton Methods, Trust Region Methods, Conjugate Gradient Methods, Least Squares Problems.
Constrained Optimization: Optimality Conditions and Duality, Convex Programming Problem, Linear Programming Problem, Quadratic Programming, Dual Methods, Penalty and Barrier Methods, Interior Point Methods.
(from nptel.ac.in)
Lecture 34 - Simplex Algorithm and Two-Phase Method |
Go to the Course Home or watch other lectures: