6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra
6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra (Fall 2012, MIT OCW). Instructor: Professor Erik Demaine. This course focuses on the algorithms for analyzing and designing geometric foldings. Topics include reconfiguration of foldable structures, linkages made from one-dimensional rods connected by hinges, folding two-dimensional paper (origami), and unfolding and folding three-dimensional polyhedra. Applications to architecture, robotics, manufacturing, and biology are also covered in this course. (from ocw.mit.edu)
Lecture 20 - Protein Chains |
This lecture focuses on the folding of the backbone chain of proteins in relation to fixed-angle linkages. Four problems types (span, flattening, flat-state connectivity, locked) are presented, followed by the canonicalization of a producible chain.
Class 20 - 3D Linkage Folding |
This class introduces recent research on flattening fixed-angle chains and addresses flipping of pockets in a polygon. Flaws and omissions in proofs on a bounding number of flips are presented along with a correct version of Bing and Kazarinoff's proof.
Go to the Course Home or watch other lectures: